DANIEL RITTER

<u>danieldritter1@gmail.com</u> | ■ 214-226-4980

EDUCATION

PhD in Computer Science, Cornell University

MSc in Advanced Computer Science, The University of Oxford

BA in Computer Science, BA in Political Science, Brown University

Cumulative GPA: 4.0 | Honors: Magna Cum Laude, Phi Beta Kappa

September 2024 - Present November 2022 May 2021

WORK EXPERIENCE

Research Assistant/Software Engineer

Harvard Medical School, Debbie Marks Lab | Boston, MA

September 2022 - July 2024

- · Developed hybrid approach to modeling protein fitness combining protein-family specific models with unsupervised large language models
- Created a large scale benchmark for evaluating protein fitness models
- Applied protein fitness models to predict likelihood of COVID19 viral escape
- Collaborated with Boston Department of Veteran's Affairs on applying sequence models to medical record data for cancer risk prediction

Teaching Assistant

Brown University | Providence, RI

September 2019 - May 2021

- · Assisted in developing and grading course material, slides, and assignments
- · Conducted weekly TA hours and labs to support student learning
- · Managed undergraduate TA staff as a head teaching assistant

Machine Learning Fellow

Kern Systems | Boston, MA

June 2020 - August 2020

• Worked on machine learning compression systems for use in a DNA storage pipeline

Image Analysis Intern

Perspectum Diagnostics | San Francisco, CA / Oxford, UK

June 2019 - August 2019

- · Applied deep learning methods to problems in digital pathology
- Improved nuclei detection in biopsy slides significantly with novel CNN methods

RESEARCH EXPERIENCE

Master's Dissertation

Oxford University

October 2021 - October 2022

- · Evaluated effectiveness and validity of various interpretability methods for large language models
- Supervised by Yarin Gal and collaborated with Been Kim

Honors Thesis

Brown University

September 2020 - May 2021

- · Advised by Michael Littman and collaborated with Mark Ho
- · Proposed method for scaling up multi-agent planning through planning in simplified sub-games

DeepLTLf Project

Brown University

September 2019 - May 2021

• Developed specialized neural architecture for learning linear temporal logic formulae

PUBLICATIONS

- 1. Ritter, D., et al. (2023). ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and Design. NeurIPS 2023.
- 2. Thadani, N., et al. (2023). Learning from Prepandemic Data to Forecast Viral Escape. Nature.
- 3. Notin, P., et al. (2022). TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness Prediction. NeurIPS Workshop.
- 4. Ritter, D., et al. (2022). Assessing the Interpretability of Large Language Models. University of Oxford MsC Thesis.
- 5. Ritter, D., et al. (2021). Multiagent Planning via Partial Coordination in Markov Games. Brown University Honor's Thesis.
- 6. Walke, H., et al. (2021). Learning Finite Linear Temporal Logic Specifications with a Specialized Neural Operator. ArXiv preprint.

SKILLS

Machine Learning Deep Learning Python PyTorch Research Natural Language Processing Computational Biology TensorFlow

Data Analysis Statistical Modeling Scientific Writing Experiment Design Version Control (Git) Linux/Unix